Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.22.492693

ABSTRACT

The spread of SARS-CoV-2 has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges due to subsequent waves and long-term consequences of great concern. Here we charted the molecular basis of COVID-19 pathogenesis, by analysing patients' immune response at single-cell resolution across disease course and severity. This approach uncovered cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identified a severity-associated activation of the receptor for advanced glycation endproduct (RAGE) pathway in monocytes. In vitro experiments confirmed that monocytes bind the SARS-CoV-2 S1-RBD via RAGE and that RAGE-Spike interactions drive monocyte infection. Our results demonstrate that RAGE is a novel functional receptor of SARS-CoV-2 contributing to COVID-19 severity.


Subject(s)
COVID-19 , Chronobiology Disorders
SELECTION OF CITATIONS
SEARCH DETAIL